Immune Checkpoint Blockade

NCI CCR TRACO
Stephanie L. Goff, MD, FACS
September 20, 2021

Objectives

- The basics of cancer immunotherapy
- Mechanism of action of checkpoint blockade
- Early clinical experience and the discovery of immune related adverse events
- FDA approvals for metastatic melanoma
 - Ipilimumab
 - Nivolumab
 - Pembrolizumab
- Milestones in development
- Experimental Questions

Cancer Immunotherapy

- 1. Nonspecific stimulation of immune reactions
 - a) Stimulate effector cells
 - b) Inhibit regulatory factors (checkpoint blockade)
- Active immunization to enhance anti-tumor reactions (cancer vaccines)
- Passively transfer activated immune cells with antitumor activity (adoptive immunotherapy)

Cells of the Immune System

Nature Reviews | Cancer
Dranoff 2004

Checkpoint blockade primarily affects T cells

T cell "birth"

- Builds a repertoire of T cells

 Nature Reviews | Immunology

 Germain 2002
- ~4x10¹¹ circulating in an adult human

T cell activation

Nature Reviews | Immunology Heath 2001

- Signal 1: Specificity
- TCR engages antigen in context of MHC

T cell activation

Chen 2013

Nature Reviews | Immunology

- Signal 2: Activation vs. Anergy
- Costimulatory molecules

T cell activation

Nature Reviews | Immunology

Pollizzi 2014

- Signal 3: Polarization
- Dependent on cytokine profile of the microenvironment

The role of Signal 2 checkpoints

- Immune checkpoints promote self-tolerance
 - Initial response to antigen occurs primarily in secondary lymphoid organs (lymph nodes, tonsils, spleen, Peyer's patches, mucosa associated lymphoid tissue)
- Immune checkpoints limit "collateral damage"
 - Effector recognition in peripheral tissue/tumor
- For cancer immunotherapy, checkpoints create opportunities to break tolerance to self-antigen

CTLA-4

- Naïve and memory T cells express surface CD28
- CTLA-4 is transported to the surface in correlation to the strength of CD28 stimulation
- CTLA-4 also competes with higher affinity for CD80/86
- A dampening effect on downstream processing
- Constitutively present on T_{reg} cells

PD-1

- A primed T-cell is heading to peripheral tissue to engage a target, and once activated begin to express PD-1
- Inflammation present in the tissue can promote upregulation of the ligands of PD-1
- In general, this limits collateral damage during cellmediated destruction of infection

PD-1/PD-L1 in cancer

- Cancer cells can increase the amount of PD-L1
- Successful T-cell tumor destruction can increase PD-L1 through upregulation in response to IFNγ

Checkpoint Blockade

- Where to start?
- Tumors known to respond to other immunotherapy
- Melanoma
- Estimated 9,320 deaths/year in US
- Metastatic disease
 20% 5 yr survival
- Interleukin-2 durable cure in 4%

- Renal Cell Cancer
- Estimated 14,970 deaths/year in US
- Metastatic disease
 12% 5 yr survival
- Interleukin-2 durable cure in 7%

- αCTLA-4, ipilimumab
- Phase I trial
- mAb (3mg/kg) + peptide
- Enrolled 14 patients
- 2 complete responders
- 1 partial response
- Accrual stopped for toxicity
 - Dermatitis, colitis, hepatitis, hypophysitis (not pictured)

- Cautiously proceeded with Phase II trials in melanoma and RCC, initially with dose reduction (3 → 1 mg/kg)
- Objective response was associated with development of autoimmune events

Melanoma, p=0.008

Objective

Response

Non-responder

(CR = 2)

> Gr 3

AE

(36%)

< Gr 3 AE	
2 (5%)	

40

RCC, p=0.009

	> Gr 3 AE	< Gr 3 AE
Objective Response (CR = 0)	5 (29%)	O (0%)
Non-responder	12	23

- Formal Phase II intrapatient dose escalation demonstrated association of response with immunerelated adverse events of any grade
- Enterocolitis was the most common grade 3/4 IRAE in patients with melanoma (18%) or RCC (28%)
- The administration of steroids to manage IRAE did not truncate responses

Melanoma, p=0.0004

	Gr 3/4 IRAE	Gr 1/2 IRAE	No IRAE
Objective Response (CR = 3)	14 (28%)	8 (22%)	1 (2%)
Non- responder	36	28	52

Beck KE 2006 Downey SG 2007

- Developed algorithms for management of IRAEs
- Demonstrated durability of responses
 - OR 13-20%
 - 5 yr OS 13-23%

Prieto PA 2012

Clinical Cancer Research

Initial FDA approvals

Drake C 2013

Ipilimumab for melanoma

- 11% response rate in Phase II trials at highest doses (10 mg/kg)
- Randomized Phase III
 ipilimumab ± gp100 vaccine vs.
 gp100 vaccine
- Allowed re-induction
- OR: ipilimumab arms
 7% (38/540)
 CR in 3 patients
- Disease control rate 22%
- Gr 3/4 irAE 10-15%

FDA approval for metastatic melanoma in March 2011

Hodi FS 2010

Ipilimumab for melanoma

- Updated survival
- 3 year OS, 20-26%
- "Tail of the curve"
 - Durable for a small# of patients

Nivolumab for melanoma

- Ipilimumab-refractory
- RCT: nivolumab vs chemotherapy of choice (CheckMate 037)
- Objective Response
 - Nivolumab 38/120, 31.7% with 4 CR
 - Chemotherapy 5/47, 10.6%

FDA approval for refractory melanoma in December 2014

Weber JS 2015
THE LANCET Oncology

Nivolumab for melanoma

- Untreated metastatic disease
- Wildtype BRAF
- RCT: nivolumab vs dacarbazine (CheckMate 066)
- Objective response
 - Nivolumab 84/210 (40%)
 CR in 16 pts (7.6%)
 - Dacarbazine 29/208 (14%) CR in 2 pts (1%)

Approved for initial treatment (*BRAF*-wt) in November 2015

Nivolumab for melanoma

- Overall Survival update for Checkmate 066
- Three-year OS:
 - Nivolumab 51%
 - Dacarbazine 22%

Nivolumab 208 179 146 122 92 76 71

Ascierto P 2018

- Ipilimumab-refractory
- Phase II, dose comparison (2mg/kg vs 10 mg/kg) vs chemo
- 540 patients
 - 2mg/kg ORR 38 (21%), 10 mg/kg ORR 46 (25%), chemo 8 (4%)
- Grade 3/4 AE 12%

- RCT, KEYNOTE-006, first-line therapy
- Pembrolizumab (q2w, q3w) vs ipilimumab
- 1:1:1
- 834 patients
- Objective Response
 - Pembrolizumab q2w 94/279 (33.7%), CR 14
 - Pembrolizumab q3w 91/277 (32.9%), CR 17
 - Ipilimumab 33/278 (11.9%), CR 4

Grade ≥3 AE

- Pembrolizumab q2w 13.3% (1.4% Colitis)
- Pembrolizumab q3w 10.1% (2.5% Colitis)
- Ipilimumab 19.9% (7% Colitis)

Front-line FDA approval for melanoma in December 2015

Robert C 2015

Three year OS of 48.1% vs 37.8%

Robert C 2019 THE LANCET Oncology

Checkpoint Modulation

Topalian, Cancer Cell 2015

- In melanoma, the two approved antibodies interfere with separate receptor/ligand complexes
- Could combination therapy improve response or survival?

- Previously untreated
- Phase III, RCT
- 945 patients
- 1:1:1
- PD-L1 (+) ≥5%

Table 1. Characteristics of the Patients at Baseline.*				
Characteristic	Nivolumab (N=316)	Nivolumab plus Ipilimumab (N=314)	Ipilimumab (N=315)	Total (N = 945)
PD-L1 status — no. (%)				
Positive	80 (25.3)	68 (21.7)	75 (23.8)	223 (23.6)
Negative	208 (65.8)	210 (66.9)	202 (64.1)	620 (65.6)
Could not be determined or evaluated	28 (8.9)	36 (11.5)	38 (12.1)	102 (10.8)
BRAF status — no. (%)				
Mutation	100 (31.6)	101 (32.2)	97 (30.8)	298 (31.5)
No mutation	216 (68.4)	213 (67.8)	218 (69.2)	647 (68.5)

- Previously untreated
- Phase III, RCT
- 945 patients
- 1:1:1
- Grade 3/4 AE
 - Nivolumab 16.3%
 - Ipilimumab 27.3%
 - Combo 55.0%

Variable	Nivolumab (N = 316)	Nivolumab plus Ipilimumab (N = 314)	Ipilimumab (N=315)
Best overall response — no. (%)*			
Complete response	28 (8.9)	36 (11.5)	7 (2.2)
Partial response	110 (34.8)	145 (46.2)	53 (16.8)
Stable disease	34 (10.8)	41 (13.1)	69 (21.9)
Progressive disease	119 (37.7)	71 (22.6)	154 (48.9)
Could not be determined	25 (7.9)	21 (6.7)	32 (10.2)
Objective response t			
No. of patients with response	138	181	60
% of patients (95% CI)	43.7 (38.1–49.3)	57.6 (52.0-63.2)	19.0 (14.9–23.8)
Estimated odds ratio (95% Ci);	3.40 (2.02–3.72)	6.11 (3.59–10.38)	_
Two-sided P value	< 0.001	< 0.001	_
Time to objective response — mo			
Median	2.78	2.76	2.79
Range	2.3-12.5	1.1–11.6	2.5-12.4

^{*} The best overall response was assessed by the investigator according to the Response Evaluation Criteria in Solid Tumors, version 1.1.

Larkin J 2015

[†] Data included patients with a complete response and those with a partial response. The calculation of the confidence interval was based on the Clopper–Pearson method. These analyses were conducted with the use of a two-sided Cochran–Mantel–Haenszel test stratified according to PD-L1 status, BRAF mutation status, and metastasis stage.

† The comparison is with the ipilimumab group.

- Previously untreated
- Phase III, RCT
- 945 patients
- 1:1:1

- Grade 3/4 AE
 - Nivolumab 21%
 - Ipilimumab 28%
 - Combo 59%

Variable	Nivolumab plus Ipilimumab (N = 314)	Nivolumab (N = 316)	Ipilimumab (N=315)
Best overall response — no. (%)†			
Complete response	61 (19)	52 (16)	16 (5)
Partial response	122 (39)	88 (28)	43 (14)
Stable disease	38 (12)	31 (10)	69 (22)
Progressive disease	74 (24)	121 (38)	159 (50)
Unable to determine	19 (6)	24 (8)	28 (9)
Objective response‡			
No. of patients with response	183	140	59
% of patients (95% CI)	58 (53–64)	44 (39–50)	19 (15–24)
Estimated odds ratio (95% CI) §	6.46 (4.45-9.38)	3.57 (2.48-5.15)	
P value	<0.001	<0.001	_
Median duration of response (95% CI) — mo	NR	NR (36.3-NR)	19.3 (8.3-NR)

FDA approval of combination for melanoma in January 2016

Wolchok J 2017

Larkin J 2019

Why melanoma?

Highly mutated tumors

- Non-small cell lung cancer (NSCLC)
 - ~154,050deaths/year in US
 - Regional disease29% 5 yr survival
 - Metastatic disease5% 5 yr survival
 - Correlation between smoking and # mutations

- Bladder cancer
 - 17,240 deaths/year in US
 - Highly lethal once metastatic
- Tumors with mismatch repair (MMR) deficiency
 - Lynch syndrome (germline mutation)
 - Sporadic mutation
 - MSH2, MLH1, MSH6, PMS2

Timeline of Anti-PD-1/L1 Antibody Approvals by the FDA

Updated August 31, 2021 Sources: CRI, CRI Analytics, and FDA

https://www.cancerresearch.org/scientists

'immuno-oncology-landscape/pd-

andscape

1-pd-l1

Pembrolizumab for mismatch repair deficient (dMMR) cancer

- Builds on hypothesis of neoantigens from somatic mutations
- Phase 2 study
- Three parallel cohorts
 - MMR-proficient CRC
 - MMR-deficient CRC
 - MMR-deficient other

Le DT 2015

Pembrolizumab at the tumor-stroma interface

FDA approval for dMMR tumors in May 2017

Checkpoint Blockade

- Highly mutated tumors
 - Melanoma
 - Non-small cell lung cancer
 - Bladder cancer
 - Tumors with mismatch repair deficiency

- Use in other tumors?
 - Renal cell
 - Responds to other immunotherapy
 - Hodgkin's lymphoma
 - Reed-Sternberg cells have elevated amounts of PD-L1
 - Head and neck SCC
 - HPV and mutations

Nivolumab for Hodgkin's Lymphoma

80 patients

100-

75

50-

25-

-100-

3est change from baseline in target lesion (%)

- Classical (cHL)
- Refractory to stem cell transplant
- Refractory to brentuximab

- Objective Response
 - -53/80(66%)
 - 7 complete remission

FDA approval for refractory cHL in May 2016

Younes A 2016

Checkpoint Modulation

Topalian, Cancer Cell 2015

- Initial focus on blocking Signal 2 on the T cell side
 - Anti-CTLA-4: ipilimumab (Yervoy), tremelimumab
 - Anti-PD-1: nivolumab (Opdivo), pembrolizumab (Keytruda), cemiplimab (Libtayo)
- Newer development on blocking Signal 2 on the target
 - Anti-PD-L1: atezolizumab (Tecentriq), avelumab (Bavencio), durvalumab (Imfinzi)

αPD-L1 in Urothelial bladder cancer

- MPDL3280A
- Atezolizumab
- 15 mg/kg q3w
- 27% tumors with
 >5% PD-L1 by IHC
- 65 patients with pretreatment biopsy
- Objective Response
 - $\ge 5\% \text{ PD-L1 } 13/30 (43.3\%)$
 - < 5% PD-L1 4/35 (11.4%)
- Grade 3/4 AE 4%

αPD-L1 in Urothelial bladder cancer

- 310 patients
- Objective Response
 - -45 (15%)
 - With 15 complete responses
- Overall Survival
 - -7.9 months
- 1 yr Survival
 - **–** 37%

FDA approval for urothelial cancer in May 2016

Rosenberg JE 2016 THE LANCET Updated Dreicer R, 2016 ASC

Avelumab in Merkel cell carcinoma

- Polyoma virus & UV damage
- 88 patients
 - Confirmed metastatic disease

- Objective Response
 - -28/88(32%)
 - 8 complete remission

FDA approval for Merkel cell carcinoma in March 2017

Kaufman HL 2016 THE LANCET Oncology

Blocking the PD-1/PD-L1 pathway

	Drug	Melanoma	NSCLC	RCC	Bladder
Anti-PD-1	Nivolumab	32% (n=107)	17% (n=129) 30% (n=20)	29% (n=34) 21% (n=168)	20% (n=270)* ¹
	Pembrolizumab	38% (n=135) 26% (n=157)	26% (n=42) 20% (n=194)	-	24% (n=29)
Anti-PD-L1	Durvalumab	-	16% (n=58)	-	18% (n=191)* ²
	Atezolizumab	30% (n=43)	23% (n=53)	14% (n=56)	26% (n=65)
	Avelumab*	-	-	-	18% (n=44)* ³

OR % (size of trial)
*Added to original chart

FDA Approved

Adapted from Lipson 2015

What about combinations?

¹ Sharma P Lancet Oncol 2017

² Powles T JAMA Oncol 2017

³ Apolo A J Clin Oncol 2017

Atezolizumab (αPD-L1) for melanoma

- BRAF V600E/K mutation
- Phase III RCT, with BRAK/MEK inhibitors
- 514 patients, randomized 1:1

FDA approval of combination for melanoma in **July 2020**

Α

Combination Clinical Trials

- Over 2900
 different trials of
 combination
 therapy with 253
 different agents
- 724 new trials in first 9 months of 2020

Rationale for Chemotherapy Combinations

PD-L1/chemo in mBrCa

- Nab-paclitaxel ± atezolizumab
- 902 patients
- Randomized
- 379 with PD-L1+ (≥1%) tumors
- Objective Response
 - Chemo + atezo 59%
 - Chemo + placebo 43%
- 2yr Survival
 - Chemo + atezo 54%
 - Chemo + placebo 37%

FDA approval for PD-L1+ TNBC in March 2019

Schmid et al 2018

Checkpoint Modulators

Every expanding list of indications

Any questions?

